Reg. No. :			

Question Paper Code: 21344

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Eighth Semester

Electronics and Communication Engineering

EC 2047/EC 803/EC 1011- OPTOELECTRONIC DEVICES

(Regulation 2008)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Differentiate between Diffraction and Scattering.
- 2. The average electric field in a particular 2.0 μ m GaAs device is 5kV/cm. Calculate the average velocity of Electron, if its mobility value is 8000 cm²/V-s.
- 3. Why cathode luminescence is less efficiency than photo luminescence?
- 4. Find the Q-factor of a laser cavity oscillating at 650nm and having a line width of 1 MHz.
- 5. What are the advantages of photo conductive detector?
- 6. Calculate the photo current density in a 1 cm length silicon PIN detector, due to a photon flux of 4.37×10^{18} cm⁻²s⁻¹. The absorption coefficient is 700 cm⁻¹.
- 7. Define Electro optic effect.
- 8. What is the principle of Quantum confined Stark effect (QCSE) based optical modulation?

- 9. What are the major differences in characteristic of Opto electronic IC's when compared to conventional electronic IC's?
- 10. Give the condition for complete power transfer from one guide to another in an optical waveguide directional coupler.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) From the Schrödinger equation, explain the formation of energy bands in solids. (16)

Or

- (b) Derive the expressions for concentration of electrons and holes in an intrinsic semiconductor, with relevant diagrams. (16)
- 12. (a) Explain with necessary diagrams the principle, construction and working of a liquid crystal display. (16)

Or

- (b) Discuss the theory of population inversion and threshold condition in two level laser system. Also explain with diagram the various transitions involved in a four level system. (16)
- 13. (a) Compare the principle, construction and working of a thermal detector and a photo conductive detector. (16)

Or

- (b) (i) Brief about the various noise sources in a photo multiplier tube. (8)
 - (ii) With an equivalent circuit, explain the factors affecting the bandwidth of a PIN photo diode. (8)
- 14. (a) (i) Explain the concept of Birefringence in Uniaxial crystal with necessary diagrams. (8)
 - (ii) Derive the expression for retardation between two waves due to applied voltage in electro optic material. (8)

Or

- (b) (i) Discuss in detail the principle and operation of QCSE based optical switching device. (10)
 - (ii) Expalin the significance for Multiple Quantum Wells in Opto electronic devices. (6)

15. (a) (i)	Explain any two applications of OEIC in detail.	(12)
	(ii)	Write a note on Hybird integration OEIC fabrication.	(4)
		Or	
- (b) (i)	Draw the diagram of a PIN diode and HBT integrated front Photo receiver and explain its operation.	end (8)
	(ii)	Discuss the noise performance in Integrated Photo receivers.	(8)